A Fractal Forecasting Model for Financial Time Series

نویسندگان

  • GORDON R. RICHARDS
  • G. R. Richards
چکیده

Financial market time series exhibit high degrees of non-linear variability, and frequently have fractal properties. When the fractal dimension of a time series is non-integer, this is associated with two features: (1) inhomogeneity— extreme fluctuations at irregular intervals, and (2) scaling symmetries— proportionality relationships between fluctuations over different separation distances. In multivariate systems such as financial markets, fractality is stochastic rather than deterministic, and generally originates as a result of multiplicative interactions. Volatility diffusion models with multiple stochastic factors can generate fractal structures. In some cases, such as exchange rates, the underlying structural equation also gives rise to fractality. Fractal principles can be used to develop forecasting algorithms. The forecasting method that yields the best results here is the state transition-fitted residual scale ratio (ST-FRSR) model. A state transition model is used to predict the conditional probability of extreme events. Ratios of rates of change at proximate separation distances are used to parameterize the scaling symmetries. Forecasting experiments are run using intraday exchange rate futures contracts measured at 15-minute intervals. The overall forecast error is reduced on average by up to 7% and in one instance by nearly a quarter. However, the forecast error during the outlying events is reduced by 39% to 57%. The ST-FRSR reduces the predictive error primarily by capturing extreme fluctuations more accurately. Copyright © 2004 John Wiley & Sons, Ltd. key words fractals; non-linear variability; state transitions; volatility diffusions; financial markets; exchange rates; forecasting

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

AN EXTENDED FUZZY ARTIFICIAL NEURAL NETWORKS MODEL FOR TIME SERIES FORECASTING

Improving time series forecastingaccuracy is an important yet often difficult task.Both theoretical and empirical findings haveindicated that integration of several models is an effectiveway to improve predictive performance, especiallywhen the models in combination are quite different. In this paper,a model of the hybrid artificial neural networks andfuzzy model is proposed for time series for...

متن کامل

Overview and Comparison of Short-term Interval Models for Financial Time Series Forecasting

  In recent years, various time series models have been proposed for financial markets forecasting. In each case, the accuracy of time series forecasting models are fundamental to make decision and hence the research for improving the effectiveness of forecasting models have been curried on. Many researchers have compared different time series models together in order to determine more efficien...

متن کامل

A hybrid computational intelligence model for foreign exchange rate forecasting

Computational intelligence approaches have gradually established themselves as a popular tool for forecasting the complicated financial markets. Forecasting accuracy is one of the most important features of forecasting models; hence, never has research directed at improving upon the effectiveness of time series models stopped. Nowadays, despite the numerous time series forecasting models propos...

متن کامل

On The Behavior of Malaysian Equities: Fractal Analysis Approach

Fractal analyzing of continuous processes have recently emerged in literatures in various domains. Existence of long memory in many processes including financial time series have been evidenced via different methodologies in many literatures in past decade, which has inspired many recent literatures on quantifying the fractional Brownian motion (fBm) characteristics of financial time series. Th...

متن کامل

Machine learning algorithms for time series in financial markets

This research is related to the usefulness of different machine learning methods in forecasting time series on financial markets. The main issue in this field is that economic managers and scientific society are still longing for more accurate forecasting algorithms. Fulfilling this request leads to an increase in forecasting quality and, therefore, more profitability and efficiency. In this pa...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2004